Skip to main content
Log in

The Role and Function of Quasi-empirical Methods in Mathematics

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This article examines the role and function of so-called quasi-empirical methods in mathematics, with reference to some historical examples and some examples from my own personal mathematical experience, in order to provide a conceptual frame of reference for educational practice. The following functions are identified, illustrated, and discussed: conjecturing, verification, global refutation, heuristic refutation, and understanding. After some fundamental limitations of quasi-empirical methods have been pointed out, it is argued that, in genuine mathematical practice, quasi-empirical methods and more logically rigorous methods complement each other. The challenge for curriculum designers is, therefore, to develop meaningful activities that not only illustrate the above functions of quasi-empirical methods but also accurately reflect an authentic view of the complex, interrelated nature of quasi-empiricism and deductive reasoning.

Résumé

Cet article analyse le rôle et la fonction des méthodes dites « quasi-empiriques » en mathématiques, par le biais de certains exemples historiques et d’autres provenant de ma propre expérience, dans le but de fournir un cadre de référence conceptuel l’enseignement. Les fonctions identifiées, illustrées et analysées sont les suivantes:

  • la conjecture (recherche par induction, généralisation, analogie, etc.)

  • la vérification (tentative d’obtenir des certitudes sur la vérité ou la validité d’une affirmation ou d’une hypothèse)

  • la réfutation globale (démonstration du fait qu’une affirmation est fausse grâce à la génération d’un contre-exemple)

  • la réfutation heuristique (reformulation, affinement ou perfectionnement d’une affirmation essentiellement vraie par le biais de contre-exemples ponctuels)

  • la compréhension (compréhension d’un théorème, d’un concept, d’une définition ou d’une démonstration, ou encore contribution à la découverte d’une preuve ou à la formulation précise d’une définition).

Nous nous intéressons en particulier à l’utilisation de plus en plus courante de l’informatique pour explorer les différents sujets, car l’ordinateur fournit des images visuelles et d’autres stimuli qui alimentent les intuitions susceptibles de contribuer à une meilleure compréhension d’un secteur de recherche donné en mathématiques. Nous soulignons la distinction importante qui existe entre la réfutation globale et la réfutation heuristique. En effet, si la première vise à démontrer la fausseté des résultats mathématiques, la seconde contribue à raffiner et à reformuler aussi bien les résultats que leur démonstration. Après une brève analyse des avantages que présentent les méthodes quasi-empiriques dans chacune des catégories citées plus haut, nous donnons des exemples qui soulignent les limites de ces méthodes pour ce qui est des certitudes (certains résultats, par exemple, résistent à de nombreuses épreuves avant de céder). De plus, il est rare que les méthodes quasi-empiriques servent à approfondir le niveau de compréhension (par exemple à comprendre pourquoi les résultats sont vrais), et il est également rare qu’elles contribuent à une systématisation des mathématiques chez les étudiants (par exemple qu’elles servent à établir des liens, etc.)

Dans la pratique des mathématiques, nous estimons donc que, loin de s’opposer les unes aux autres, les méthodes quasi-empiriques et les méthodes plus rigoureuses sur le plan de la logique se complètent. Le défi à relever dans la mise au point des curriculums consiste à créer des activités significatives capables non seulement d’illustrer les fonctions citées plus haut, mais également de fournir une vision authentique de la complexité des liens qui caractérisent les raisonnements quasi-empiriques et les raisonnements déductifs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arber, A. (1954). The mind and the eye. Cambridge: Cambridge University Press.

    Google Scholar 

  • Aigner, M., & Ziegler, G.M. (2004). Proofs from THE BOOK (3rd ed.). New York: Springer.

    Book  Google Scholar 

  • Borba, M.C., & Skovsmose, O. (1997). The ideology of certainty in mathematics education. For the Learning of Mathematics, 17(3), 17–23.

    Google Scholar 

  • Burger, W.F., & Shaughnessy, M. (1986). Characterizing the Van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17(1), 31–48.

    Article  Google Scholar 

  • Bradis, V.M., Minkovskii, V.L., & Kharcheva, A.K. (1959). Lapses in mathematical reasoning. Oxford: Pergamon Press.

    Google Scholar 

  • Chazan, D. (1990). Quasi-empirical views of mathematics and mathematics teaching. In G. Hanna & I. Winchester (Eds.), Creativity, thought and mathematical proof. Toronto: OISE.

    Google Scholar 

  • De Jager, C.J. (1990). When should we use pattern? Pythagoras, 23, 11–14.

    Google Scholar 

  • Davies, P.J. (1995). The rise, fall, and possible transfiguration of triangle geometry. American Mathematical Monthly, 102(3), 204–214.

    Article  Google Scholar 

  • Davis, P.J., & Hersh, R. (1983). The mathematical experience. Harmondsworth, UK: Penguin.

    Google Scholar 

  • De Villiers, M. (1989). From ‘TO POLY’ to generalized poly-figures and their classification: A learning experience. International Journal of Mathematics Education in Science and Technology, 20(4), 585–603.

    Article  Google Scholar 

  • De Villiers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24, 17–24. Available: https://doi.org/mzone.mweb.co.za (accessed 11 May 2004).

    Google Scholar 

  • De Villiers, M. (1996). Some adventures in euclidean geometry. Durban, South Africa: University of Durban-Westville.

    Google Scholar 

  • De Villiers, M. (1997). The role of proof in investigative, computer-based geometry: Some personal reflections. In D. Schattschneider & J. King (Eds.), Geometry turned on! (pp. 15–24). Washington, DC: MAA.

    Google Scholar 

  • De Villiers, M. (1998, November). Dual generalizations of Van Aubel’s theorem. Mathematical Gazette, (496), 405–412.

    Article  Google Scholar 

  • De Villiers, M. (1999, March). A further generalization of the Fermat-Torricelli point. Mathematical Gazette, 72(1), 14–16.

    Google Scholar 

  • De Villiers, M. (2000, March). A Fibonacci generalization: A Lakatosian example. Mathematics in College, 10–29. Available: https://doi.org/mzone.rnweb.co.za (accessed 11 May 2004).

    Google Scholar 

  • De Villiers, M. (2002). From nested Miquel triangles to Miquel distances. Mathematical Gazette, (507), 390–395.

    Article  Google Scholar 

  • De Villiers, M. (2003). Rethinking proof with Geometer’s Sketchpad 4. Emeryville, CA: Key Curriculum Press.

    Google Scholar 

  • De Villiers, M., & Meyer, J. (1995). A generalized dual of Napoleon’s theorem and some further extensions. Internationaljournal of Mathematics Education in Science and Technology, 26(2), 233–241.

    Article  Google Scholar 

  • Epstein, D., & Levy, S. (1995). Experimentation and proof in mathematics. Notices of the AMS, 42(6), 670–674.

    Google Scholar 

  • Ernest, P. (1991). The philosophy of mathematics education. Basingstoke, UK: Falmer Press.

    Google Scholar 

  • Eves, H. (1969). The history of geometry. In Hallerberg, A.E. (Ed.), Thirty-first NCTM Yearbook Historical topics for the mathematics classroom (pp. 165–221). Reston, VA: NCTM.

    Google Scholar 

  • Fischbein, E. (1982). Intuition and proof. For the Learning of Mathematics, 3(2), 9–18, 24.

    Google Scholar 

  • Fuys, D., Geddes, D., & Tischler, R. (1988). The Van Hiele model of thinking in geometry among adolescents (Research Monograph No. 3). Reston, VA: NCTM.

    Google Scholar 

  • Gale, D. (1990). Proof as explanation. The Mathematical Intelligencer, 12(1), 4.

    Google Scholar 

  • Grünbaum, B. (1993). Quadrangles, pentagons, and computers. Geombinatorics, 3, 4–9.

    Google Scholar 

  • Grünbaum, B., & Shephard, G. (1994). A new look at Euler’s theorem for polyhedra. American Mathematical Monthly, 101(2), 109–128.

    Article  Google Scholar 

  • Hales, T.C. (2000). Cannonballs and honeycombs. Notices of the AMS, 47(4), 440–449.

    Google Scholar 

  • Halmos, P. (1984). Mathematics as a creative art. In D. Campbell & J. Higgens (Eds.), Mathematics: People, problems, results (Vol. 2, pp. 19–29). Belmont, CA: Wadsworth.

    Google Scholar 

  • Hanna, G. (1983). Rigorous proof in mathematics education. Toronto: OISE Press.

    Google Scholar 

  • Hanna, G. (1989). More than formal proof. For the Learning of Mathematics, 9(1), 20–23.

    Google Scholar 

  • Hanna, G. (1995). Challenges to the importance of proof. For the Learning of Mathematics, 15(3), 42–49.

    Google Scholar 

  • Hanna, G. (1997). The ongoing value of proof. In M. De Villiers & F. Furinghetti (Eds.), ICME-8 Proceedings of topic group on proof (pp. 1–14). Centrahil, South Africa: AMESA.

    Google Scholar 

  • Henderson, D. (1996). Experiencing geometry on plane and sphere. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Hilton, P., & Pedersen, J. (1994). Euler’s theorem for polyhedra: A topologist and geometer respond. American Mathematical Monthly, 101(10), 959–962.

    Article  Google Scholar 

  • Hofstadter, D.R. (1985). Metamagical themas: Questing for the essence of mind and pattern. New York: Basic.

    Google Scholar 

  • Hölder, O. (1924). Die Mathematische Methode. Berlin: Springer.

    Book  Google Scholar 

  • Horgan, J. (1993, Oct). The death of proof. Scientific American, 74–82.

    Google Scholar 

  • Kleiner, I., & Movshovitz-Hadar, N. (1991). The role of paradoxes in the evolution of mathematics. American Mathematical Monthly, 101(10), 963–974.

    Article  Google Scholar 

  • Kramer, E.E. (1981). The nature and growth of modern mathematics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Lakatos, I. (1983). Proofs and refutations (4th rpt.). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Lester, J. (1997). Triangles III: Complex triangle functions. Aequationes Mathematicae, 53(4), 35.

    Google Scholar 

  • Luthuli, D. (1996, August). Questions, reflection and problem posing as sources of inquiry in Euclidean geometry. Pythagoras, 40, 17–27.

    Google Scholar 

  • Movshovitz-Hadar, N., & Webb, J. (1998). One equals zero and other mathematical surprises. Emeryville, CA: Key Curriculum Press.

    Google Scholar 

  • Neubrand, M. (1989). Remarks on the acceptance of proofs: The case of some recently tackled major theorems. For the Learning of Mathematics, 9(3), 2–6.

    Google Scholar 

  • Northrop, E.P. (1980). Riddles in mathematics. Harmondsworth, UK: Penguin.

    Google Scholar 

  • Oldknow, A. (1995). Computer aided research into triangle geometry. The Mathematical Gazette, 79(485), 263–274.

    Article  Google Scholar 

  • Oldknow, A. (1996). The Euler-Gergonne-Soddy triangle of a triangle. The American Mathematical Monthly, 103(4), 319–329.

    Article  Google Scholar 

  • Polya, G. (1954). Mathematics and plausible reasoning: Induction and analogy in mathematics (Vol. 1). Princeton, NJ: Princeton University Press.

  • Polya, G. (1968). Mathematics and plausible reasoning: Patterns of plausible inference (Vol. 2). Princeton, NJ: Princeton University Press.

  • Polya, G. (1981). Mathematical discovery (Vol. 2). New York: John Wiley.

  • Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(3), 5–41.

    Article  Google Scholar 

  • Rota, G-C. (1997). The phenomenology of mathematical beauty. Synthese, 111, 171–182.

    Article  Google Scholar 

  • Rotman, J. (1998). Journey into mathematics: An introduction to proofs. Upper Saddle River, NJ: PrenticeHall.

    Google Scholar 

  • Schoenfeld, A. (1986). On having and using geometric knowledge. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 225–264). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Singh, S. (1998). Fermat’s last theorem. London: Fourth Estate.

    Google Scholar 

  • Srinivasan, V.K. (2002). Geese are swans and swans are geese or selecting unripe fruits instead of ripe fruits. Internationaljournal of Mathematics Education in Science and Technology, 33(6), 941–949.

    Article  Google Scholar 

  • Volmink, J. (1990). The nature and role of intuition in mathematics. Pythagoras, 22, 6–10.

    Google Scholar 

  • Wilder, R.L. (1967). The role of intuition. Science, 156, 605–610.

    Article  Google Scholar 

  • Wittmann, E. (1981). The complementary roles of intuitive and reflective thinking in mathematics teaching. Educational Studies in Mathematics, 12, 389–397.

    Article  Google Scholar 

  • Waterhouse, W.C. (1994). A counterexample to Germain. American Mathematical Monthly, 101(2), 140–150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Villiers, M. The Role and Function of Quasi-empirical Methods in Mathematics. Can J Sci Math Techn 4, 397–418 (2004). https://doi.org/10.1080/14926150409556621

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150409556621

Navigation